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The influence of the thickness of particle deposits and surface roughness on the 
heat-transfer and resistance coefficients is examined. It is shown that for high 
degrees of roughness resulting from the deposition of coarse particles, the 
efficiency decreases with increase in the thickness of the layer deposited, even 
at large Re numbers. 

The flow of disperse systems in heat-exchangers leads to the deposition of solid-phase 
particles on the heat-transfer surface, an example being the deposition of contaminant 
particles (clay, sand, tar, coke, etc.) from crude oil on tube walls. 

As noted in [i, 2], the formation of a layer of particles with low thermal conductivity 
on a heat-transfer surface leads to a fall in the overall heat-transfer and resistance co- 
efficients (for a smooth surface e/g0 % 81/4) and an~increase in the surface heat transfer 
coefficient (s/s 0 % 8-I.s). The surface of the deposited layer is characterized by a certain 
degree of roughness which mainly depends on the particle size. For coarser particles the 
height of the asperities may be maximal (A = amax), which changes the structure of the turbu- 
lent boundary layer (Re r = A'U*/w > 60) as a result of the increased generation of turbulence 
near the wall (surface of deposits). However, large values of the Reynolds number Re r have 
different effects on the resistance and surface heat-transfer coefficients. 

It is known that the use of rough surfaces is one means of intensifying heat transfer 
[3]. In some cases the heat-transfer rate can be increased severalfold by creating arti- 
ficially rough surfaces, although this leads to an increase in flow resistance. 

Our object was to investigate the effect of the thickness of the deposits and the rough- 
ness of the surface on the heat-transfer and resistance coefficients, so as to be able to 
select certain conditions for intensifying heat-transfer processes. Taking surface roughness 
into account, the resistance coefficient is given by [4] 

(~ 68 "~ 1/4- 
e=O,11 + Re / (i) 

Setting D = DoG and Re = Re08 -I [2], from (i) we obtain 

e= 0,11 (--D~o~ + 68~ ~1/4 (2) 
Reo / 

For smooth tubes A/D0 << 68/Re0 expression (2) coincides with the result E/g0 % ~i/~ [2]. 
Obviously, for a surface with developed roughness (A/D0 >> 68/Re0) we have e/g 0 % ~-i/~, 
i.e., as the thickness of the deposit increases so does the resistance coefficient (Fig. i). 
For certain values of the roughness and Re the e(8) curve passes through an extremum. As 
the thickness of the deposits increases, the resistance coefficient for developed roughness 
depends only slightly on the Re number. 

Particle deposition in tubes is migrational and gravitational in character [5]. At high 
flow temperatures in horizontal tubes the rate of gravitational settlement is much greater 
than the rate of migrational deposition. Obviously, at higher values of the flow velocity 
due to an increase in deposit thickness (U/U 0 = 6 -2 ) [2] larger particles will be deposited, 
since the finely dispersed component will be entrained by the convection flow. C6nsequently, 
as the thickness of the deposits grows, the roughness of the surface increases up to values 
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Fig. i. Resistance coefficient as a function of deposit thickness 
for: i) A/D 0 = 0.001, Re = 4"103; 2) 0.001 and 104; 3) 0.01 and 
104; 4) 0.02 and 6"103; 5) 0.001 and 3.103; 6) developed roughness: 
A/D0 >> 68/Re; 7) smooth surface: A/D 0 << 68/Re. 

Fig. 2. Efficiency as a function of deposit thickness for: i) 
A/D 0 = 0.001, m = i0, Re = 104; 2) 0.04, 102 and 104; 3) 0.001, 102 
and 104; 4) 0.001, 60, and 104; 5) large values of Re and Pr and 
small values of A/D0; 6) large values of A/D 0 and small values of 
Re and Pr. 

A = ama x. This makes it possible to determine the dependence of the resistance coefficient 
on the roughness (particle size) and deposit thickness only, i.e., e % 0.11(A/D08)x/4. In 
order to estimate the effect of the roughness and deposit thickness on the heat transfer we 
introduce the efficiency: 

St/Sto 
* l =  

8/go 

In the fully developed roughness regime the heat-transfer coefficient of rough surfaces is 
determined from the relation [3] 

St = e!8 
(m - -  8,48) F T ~  + 1  ' 

w h e r e  m = 4 . 5  ( y + ) ~ 1 7 6  As f o l l o w s  f r o m  F i g .  2 ,  t h e  e f f i c i e n c y  d e p e n d s  on t h e  r o u g h -  
n e s s  of the surface and the thickness of the deposits and on the Re and Pr numbers. As the 
roughness decreases and the Pr and Re numbers increase, the region of efficient utilization 
of rough surfaces grows. At large deposit thicknesses the efficiency N is much reduced. 
For large roughnesses or dispersed-phase particle sizes the efficiency decreases with in- 
crease in deposit thickness even at large Re numbers. Thus, an increase in efficiency is 
ensured only for a thin deposit formed by deposition of the finely dispersed component of 
the solid phase. FOr apparatus with external heat transfer, particle deposition on the heat 
transfer surface leads to a fall in the overall heat-transfer coefficient k -1% in ~-l [6]. 
The increase in the surface heat-transfer coefficient due to particle deposition can com- 
pensate to some extent for the decrease in the overall heat-transfer coefficient only if the 
deposit is not very thick. 

In the general case the surface roughness (Pitch and height of the asperities) depends 
to a considerable extent on the particle distribution in the disperse flow. The character of 
the surface roughness can be predicted by constructing the evolution of the particle-size 
distribution function with respect to time on the basis of the Fokker-Planck equations or 
the integral coagulation equation with allowance for deposition. 

NOTATION 

a, particle size; D, tube diameter; R, tube radius; y+, dimensionless coordinate; U,, 
dynamic velocity; U, flow velocity; a, surface heat transfer coefficient; ~ = 1 - 6/R; 6, 
thickness of the deposits; A, height of the roughness. Subscripts: 0, without deposition. 
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DETERMINATION OF THE THERMOPHYSICAL CHARACTERISTICS 

BY THE SELF-OSCILLATION METHOD 

V. P. Alekseev, S. E. Birkgan, Yu. N. Burtsev, 
A. S. Rudyi, and S. N. Shekhtman UDC 536.2 

A method is proposed for measuring the thermophysical characteristics by means of the 
self-oscillation frequency and the gain coefficient of the automatic regulation system 
containing the specimen under investigation. 

The phenomenon of exciting self-oscillatlons in automatic regulation systems is well 
known [i, 2]. For a regulator of low inertia the self-oscillation frequency depends only on 
the physical characteristics of the object of regulation. If material with unknown thermo- 
physical characteristics is taken as such an object, and a temperature stabilizer as regulator, 
then stable, almost sinusoidal, temperature oscillations can be obtained in the specimen under 
investigation. The frequency of these oscillations permits an assessment of the thermal 
diffusivity of the material. The heat conduction equation with nonlinear boundary conditions 
will be the mathematical model of this system. Similar equations with a weak nonlinearity 
are investigated by asymptotic methods. Thus, an algorithm to compute the self-oscillation 
in nonlinear parabolic systems with a small parameter [3] used in this paper was developed 
and given a foundation comparatively recently. Asymptotic methods are based on the fact that 
the desired periodic solution is bifurcated from the equilibrium state as the small parameter 
increases. Let us note that the bifurcation of periodic solutions can occur only in the case 
of a nonlinearity of a definite kind (soft excitation mode), the amplitude of the self- 
oscillations here diminishes together with the parameter. In the opposite case the amplitude 
of the periodic solutions does not decrease with the diminution of the parameter (hard exci- 
tation mode) and asymptotic methods are unsuitable. Although the self-oscillation frequency 
of a system with such kind of nonlinearity indeed contains information about the thermophysical 
characteristics of the material, it is not possible to extract it without relying on numerical 
methods. In other words, the presence of self-oscillations without making the kind of non- 
linearity specific cannot be used to determine the thermal diffusivity. UNfortunately, these 
well-known facts are not always taken into account [4]. Without delving into an analysis 
of the problem, the authors of the mentioned paper try to obtain a relationship between the 
frequency and the thermal diffusivity by assuming that the phase shift of the temperature 
oscillations in the specimen equals ~ and is 2~ in combination with the phase shift of the 
inverting amplifier signal. Overlooked here is that a phase shift also exists between the 
power liberated in the heater and its temperature by virtueof the integrating properties of 
the specimen~ Then the total phase shift in the system exceeds 2~ which contradicts the self- 
oscillation condition. This and other examples indicate the necessity of a complete analysis 
of such systems. 

Let us turn to a description of one of the possible methods of realizing the self- 
oscillation method, the construction of its mathematical model, and also the derivation of 
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